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Abstract 

Pythia is an optimizing compiler for the coordination language Delirium, written in 

Delirium. It is part of the Madness project, which investigates both an alternative to the 

traditional dataflow model and an alternative to the traditional dataflow implementation 

strategy. Delirium embeds imperatively defined operators within a functional context, 

giving the programmer control over the granularity of a computation. The application's 

control structure is expressed using powerful functional-language constructs like closures 

and function valued parameters. The bulk of actual computation, however, is expressed 

in a convenient imperative language. Pythia performs traditional optimization strategies 

like macro-expansion, common-subexpression elimination, and constant propagation. 
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1 Introduction 

Pythia is an optimizing compiler for the coordination language Delirium, written in 

Delirium. In addition to serving as a necessary tool, the compiler has two design goals: 

to demonstrate dataflow graph optimization strategies and to prove that Delirium is able 

to conveniently express the control structure of a complex parallel program. Parallel tree 

walking is shown to be a useful methodology for parallel computation which is easily 

described in Delirium. 

Dataflow [1, 2] is an attractive model for parallel computation because it does not 

introduce artificial sequencing dependencies. A dataflow language compiler translates a 

program into a graph, where nodes in the graph (called actors) represent computations 

and arcs represent data dependencies. There are two major problems that have prevented 

dataflow from being accepted: scheduling overhead and data structure decomposition. 

Steve Lucca and I worked on a project we called Madness, in which we developed 

a modified dataflow paradigm that attempts to address both of these difficulties. We 

were motivated by a desire to give the programmer control over important decisions and 

to reduce system overhead to the practicable minimum. Section 2 describes the model 

in detail and section 3 covers Delirium, the functional language on which the system is 

based. We call Delirium a coordination language, because the programmer uses it to 

coordinate a set of sub-computations rather than to express computation directly. 

We are in the process of implementing various applications within our model to test 

its usefulness. The two most important parts of our development environment are the 

run time system and the compiler. In our initial work, we developed two compilers 

and two run time systems; as our ideas were expanded and refined, we found that the 

original designs were inadequate. The second incarnation of the run time system, which 

we named Obsession, has proven to be flexible and efficient. It takes advantage of an 

idea we call template activation to achieve excellent performance on a general-purpose 

shared memory machine. The run time system currently runs on the Sequent Symmetry, 

the Cray 2, the Cray Y-MP, and the Butterfly TC2000. This paper does not cover the 

implementation of the run time system, other than to give the performance measurements 

that affect compiler optimization decisions. 

The second version of the compiler, while adequate, was based on a straight-forward 

translation with a minimum of analysis. We were intrigued by the notion of applying 

traditional optimization techniques to dataflow graphs, an idea that has been explored 

by other researchers [19]. Rather than extensively modifying the existing compiler. I 

decided to rewrite it in Delirium. Pythia is at the same time a useful tool and an 

interesting application. 

Developing a usable compiler in a functional language is something of a challenge, 

because traditional implementation techniques rely on incremental update of a parse 

tree that represents the program being compiled. Incremental modification is difficult 

for functional languages to handle efficiently; existing proposals, like !-structures [3], 

have not been too successful. Pythia poses the added challenge of parallel execution. 
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The solution to both problems was the same: base all expensive computations in 

the compiler on a small set of parallel tree walking primitives. Trees are very tractable 

structures for parallel processing because they have a regular structure that can be easily 

decomposed into independent units. However, a parse tree usually has a variety of an­

notations that create non-tree-like dependencies. If these links were carelessly traversed, 

two execution threads could come into conflict and corrupt the integrity of the tree. The 

walking primitives establish rules that prevent such conflicts from happening; any prim­

itive that obeys the restrictions is guaranteed to have deterministic behavior regardless 

of the number of processors that perform the tree walk. 

There are three tree-walking primitives, which are described in detail in Section 6.2. 

Taken together, they are sufficient for expressing all the traditional parse tree manipu­

lations. Each guarantees an execution order over the tree that allows efficient parallel 

execution. The most important guiding principle in designing the compiler was to es­

tablish and obey the restrictions on the traversal behavior and dependencies of each 

pass. Having grown accustomed to using the walking primitives, I found each pass rela­

tively straight-forward to implement. The only major change in design from a sequential 

compiler was the need to split a few passes into a marking and an execution phase. 

Our experiences with the compiler (Pythia) and a set of other applications have con­

vinced us that Madness is a useful programming model for a broad range of applications. 

vVithout excessive effort, we have been able to write parallel programs that achieve good 

performance, using programming techniques that are in many ways similar to traditional 

structured programining. 

2 The Model 

A traditional dataflow program is converted into a graph, where each node represents a 

primitive computation. These primitives are generally simple (or light-weight) operations 

like addition and list manipulation. The run time system is responsible for scheduling 

the primitives when the data upon which they operate becomes available. 'When an 

operation that executes for a fraction of a micro-second is being scheduled, clearly the 

scheduling overhead must be extremely low or the overall performance will be very 

poor. To address this problem, data-flow researchers have proposed various specialized 

architectures that handle scheduling in hardware. Even with extensive support, however, 

a flexible language is difficult to implement efficiently. 

One solution has been to use static scheduling, a technique for determining the entire 

primitive execution schedule at compile-time. Unfortunately, this is only feasible if severe 

restrictions are placed on the underlying language, and has proven useful only in a few 

specific application domains (notably digital signal processing [13]). 

An obvious alternative approach is to put more complicated (or heavier) compu­

tations in a node. Our idea is to allow the programmer to write primitives in any 

imperative language (like C or Fortran), as long as the effect of the primitive as a whole 
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is functional. Within the node, however, the full power of the imperative language is 

available (with a few exceptions that are explained below). The application consists of 

a large number of primitives that are invoked by a web of functional control structures. 

The bulk of a Delirium program is written in the familiar imperative language; we have 

found that the easiest strategy is to write the entire application that way at first. The 

careful programmer can then replace the top level of the application with functionally 

equivalent Delirium code, yielding a relatively painless transition to parallel execution. 

This is how Pythia was implemented. 

Traditional dataflow languages also have difficulty managing large data structures. 

The normal strategy in imperative languages is to make a series of small (and often 

related) modifications to various parts of the structure. Current dataflow languages make 

it awkward to express such updates; even more serious, performance is dismal unless the 

compiler is clever enough to avoid unnecessary copying (Cann's thesis [4] describes a 

variety of analysis techniques). By taking advantage of shared memory architectures, we 

are able to use high-level functions to decompose structures, operate on the pieces, and 

recombine them efficiently. 

Our research into efficient execution of Delirium programs has focused on shared 

memory multiprocessors. All of the most commonly used supercomputers (like the Cray 

2 [5] and Cray Y-MP) have this architecture. We believe that during the next decade 

personal workstation design will move in the same direction. The relative ease with 

which shared memory operating systems can be constructed, the utility of such systems in 

typical workstation tasks (such as the compilation of multiple files), and th·e large number 

of shared memory projects all support this conclusion. The latter include commercial 

machines like the Sequent [8] and workstation research projects like the Spur [11] and 

the Firefly [20]. 

Delirium has a significant advantage when executed on supercomputers, because the 

operators can be expressed in a traditional language to take advantage of vectorizing com­

piler technology that is already well understood. Furthermore, existing programs written 

in those imperative languages can be much more quickly parallelized under Delirium than 

any system that requires programs to be expressed in a new notation. 

3 Delirium: The Language 

Delirium is a functional language without built-in primitives. The programmer uses 

it to describe the control structure of the application, taking advantage of powerful 

constructs like closures and function valued parameters. Actual computation is done by 

the operators, which can be written in several languages including C, FORTRAN, and 

compiled Common Lisp. 

The earliest dataflow languages were fairly primitive, because the specialized archi­

tectures that were designed to support them (like the Manchester machine [10]) could 

only manage simple tokens. The notion of embedding a graph within a token did not 
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emerge for some time and is still not embraced by all of the dataflow community. The rest 

of the functional language community quickly moved to first class functions (described 

below) and other elegant refinements in languages like ALFL [12]. 

As mentioned in the introduction, one of the goals behind Madness was to investi­

gate a new execution strategy for dataflow graphs that we felt would be efficient on a 

general purpose computer. This strategy supports tokens that represent expandable sub­

graphs, freeing us to include in Delirium features that are common in modern functional 

languages. 

One feature in modern functional languages that we have not incorporated in Delir­

ium is rich support for type declaration and inference- the language is untyped. However, 

operators can optionally be annotated with type declarations which are enforced by the 

run time system. We have not used the declarations for our existing applications; type 

checking proved to be quite unnecessary for the compiler, though it would have identified 

one or two easily discovered bugs. 

Constructs in Delirium are similar in spirit to those found in other languages like 

ALFL [12] and VAL [15]. The programming style is quite different, however, because of 

the lack of built-in primitives. The high level control of the application is described in 

Delirium, providing a way for computation to be spread easily across the processors in a 

parallel machine. The programmer must be careful to use destructuring operators when 

dealing with large data structures, or there will be little improvement over sequential 

code. The design of the compiler itself is one example that demonstrates the kinds of 

strategies available to the Delirium programmer. . 

A Delirium program consists of a group of functions, one of them called main. Func­

tions are first class objects, meaning that they may be passed as arguments, bound to 

variables, or returned as values (Section 5.1.1 describes functions in detail). Dynamic 

graphs are important, because they allow a wide variety of control constructs to be ex­

pressed compactly. Dataflow languages without support for graph expansion have great 

difficulty with unpredictable execution strategies like recursion. The Delirium run time 

system has extensive support for managing dynamic graphs efficiently. 

Functions can be applied to arguments and are curried if fewer arguments are supplied 

than were expected. A function of two arguments a and b can be applied to a single 

argument x. The result is a function of one argument that has the binding of a to x 

bound within it. When this new function is applied to an argument y, the result is the 

same as that of applying the original two-argument function to x and y at once. 

Delirium also supplies a macro facility, something used in other languages as a no­

tational convenience or to control evaluation of arguments. In Delirium, macros are 

intended primarily for convenient operation on large data structures. 
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3.1 The Basic Language 

One advantage of functional languages is their fundamental simplicity. Only a few con­

structs are necessary to provide a rich programming framework. This section describes 

the ba.sic structures in Delirium (see Appendix II for a BNF grammar). Each structure 

is a different type of value-producing expression. A Delirium program consists of a set 

of functions, one of them called main. A function definition consists of a name, an ar­

gument list in parentheses, and a body. The body is an expression, which is evaluated 

when the function is applied. Here is a simple example: 

main() 
start_things_rolling(42) 

3.1.1 Atoms 

The simplest expressions in Delirium are either constants or binding references. Constant 

types are integers, strings, and floating point numbers. Some examples: 

an_integer_operator(34) 

a_string_operator(''hello'') 

a_float_operator(-345.23) 

H a variable appears, the name must be bound in the surrounding environment, using 

standard lexical scope rules. 

3.1.2 Multiple Values 

Because functional languages eliminate global variables, it is especially useful for them 

to allow multiple value return. This is even more true in Delirium, which depends on 

destructuring operators to divide large data structures into many pieces that can be 

processed in parallel. The synta..x is simple: 

<expl,exp2,exp3 ... > 

where the comma separated values may be any valid expression. This package can 

be pa.ssed around a.s a single value; its components can be separated only within a let 

binding a.s described below. 

3.1.3 Let Bindings 

The let binding associates identifiers with expressions. Its syn_tax is: 
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let 
<var> = <value> 

in <expression> 

A binding can also be used to subdivide a. multiple value: 

let 
<a,b,c> = op_that_yields_multiple_value(12) 

<d,e> = c 
in do_something(a,b,c,d,e) 

In this example, the vaxia.ble c must be a. multiple value package or an error will 

be signaled at run time. To manipulate packages, we have provided a. set of operators 

like car, cdr, cadr, etc. These axe simple to write and a. different set could be defined 

quickly by a. Delirium programmer if desired. 

The last kind of let binding creates a. function, eliminating the need for a "lambda" 

construct by making it easy to define functions where they axe needed. The syntax is: 

let 
<name>(<arg>, <arg>, ... )=<body> 

in <expression> 

Within the expression making up the body of the let, a. new function has been defined. 

Nested bindings axe scoped in sta.ndaxd lexical fashion. 

Each of the expressions on the right hand side of the equals sign can refer to any 

of the variables or functions bound in that let statement (some dialects of LISP, like 

SCHE1-IE [1 i], call this construct a. letrec). For example, this is a legal code fragment: 

let a = salt(15) 

salt(x) = if imdone(x) then 10 
else salt(next_value(x)) 

in figure_something_out(a) 

Of course, if imdone and next_value are not correctly written, this expression may 

not terminate. A value will be returned if imdone(15) is true or if imdone(exp) is true, 

where exp consists of some finite number of next_value applications on to the original 

value of 15. 

Mutually recursive functions are also legal, as in: 
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let salt(x) = if imdone(x) then x 
else pepper(next(x)) 

pepper(y) = if hesdone(y) then y 
else salt(next(y)) 

in 
salt(give_start_value()) 

3.1.4 Function Application 

A function ca.n be applied to a comma-separated list of arguments. This causes the 

evaluation of the body of the function, replacing uses of the formal parameters with the 

corresponding actuals supplied by the invocation. As explained above, automatic cur­

rying is performed if too few arguments are supplied. Operator invocation has identical 

syntax a.nd is evaluated by calling the operator on the supplied arguments. 

3.1.5 Conditional 

The syntax for the conditional is: 

if <exprl> then <expr2> else <expr3> 

where <exprl> must evaluate to a.n integer. As in C, a zero value is false a.nd a 

non-zero is true. 

3.1.6 Iteration 

The iterate construct syntax is: 

iterate 
{ 

<iter-variable>= <initial-value-expr>, <update-value-expr> 

} 

while <expression>, result <expression> 

Evaluation begins by binding each iteration variable to its initial value. If the con­

ditional expression is true, each iteration variable is bound to the value of the update 

expression. The conditional expression is re-evaluated. The looping ends when the while 

expression is false; the final value of the iterate construct is the expression appearing 

after result. 
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3.2 Operators 

An operator in Delirium is a procedure written in an imperative language like C or 

Fortran. Each node in the dataflow graph has a corresponding operator, except for a few 

types that are handled by the runtime environment directly. An example of the latter is 

a function application node, described below in detail. Aside from these special cases, a 

normal node has some number of inputs, each corresponding to one of the arguments of 

the function. Some operators return more than one value, in which case the programmer 

must use a special syntax because languages like C do not support multiple value return. 

For the purposes of scope, operators are considered to exist as undeclared top level 

functions. Normal scope rules apply, so the visibility of an operator named salt would 

be obscured by a let binding with the same name. 

There are a few restrictions on operators. They are intended to work functionally, so 

they are not permitted to use static or global variables. Each time an operator is invoked 

on the same input, it should return the same output, just as any primitive in a functional 

language does. This raises a few difficulties- I/0, for example. The traditional solution, 

in languages like VAL [16], is to this problem is to use streams. Input and output values 

are packaged as a stream of values. The programmer can get the head of a stream (its 

first value), the tail (the rest of the values), can append streams, etc. We have provided 

a traditional stream library with Delirium that is designed to interact with the UNIX 

file system. 

Another problem with functional operators is that non-determinism is difficult to 

manage. We felt that non-deterministic operators might be an interesting experiment, 

so we allow the programmer to annotate an operator to that effect. This prevents Pythia 

from changing the number of calls to that operator through optimization. For example. 

suppose that we define a non-deterministic operator random that computes a random 

number using some external criteria as a seed. This violates the functional model, so 

it is no longer legal to assume that two seemingly identical applications of random will 

return the same result (and it would be a rather poor random number generator if they 

always did!). Pythia, warned by the non-deterministic annotation, will not optimize the 

two calls into a single one as it normally would, routing the value of a single call to both 

uses. Instead, the output sub-graph would contain two separate nodes representing the 

different calls (unless either or both were eliminated as dead code- see below). 

While operators can be written in any language that can be cross-linked to C, we 

have provided a pre-processor that makes C operators much more convenient to write. 

Here is a simple example: 

float max(vall, val2) 

float vall, val2; 
{ 

if (vall > val2) 

return(vall); 

else 
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return(val2); 

} 

The preprocessor modifies the code, replacing return with code that fills a special 

token structure with the return value. It also creates a separate file listing all the 

operators and the types they expect as arguments and return as values. To return 

multiple values, the programmer lists them as arguments to return, separated by commas. 

The list of types precedes the function, also separated by commas. For example: 

STREAM, int check_next(s) 

STREAM s; 
{ 

} 

if (satisfies_test(head(s))) 

return(tail(s),TRUE); 

else 
retupl(s,FALSE); 

The operator checks to see if some test is satisfied; if so, it returns the rest of the 

stream and TRUE, indicating that one value of the stream has been consumed. Otherwise 

it returns the original stream and FALSE. Note that we have provided versions of all the 

stream primitives that are callable directly by C routines. 

Sometimes it is convenient to have an operator that can have different numbers of 

arguments. In such cases, we supply a set of macro definitions that are more flexible 

than a static declaration. Here is the last example again, using the C macros for input 

and output: 

check_next(s) 
{ 

} 

STREAMs= GET_INPUT(O,STREAM); 

if (satisfies_test(head(s))) { 

DO_OUTPUT(O,STREAM,tail(s)); 

DO_OUTPUT(l,int,TRUE); 

} 

else { 
DO_OUTPUT(O,STREAM,s); 

DO_OUTPUT(l,int,FALSE); 

} 

This version of the macros includes type declarations. which are dynamically checked 

at run time.· A different version dispenses with the declarations, placing that responsi­

bility on the programmer. 
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One final annotation supported by the pre-processor is destr. This notifies the run 

time system that the specified argument to the function might be destructively modified. 

Because memory is shared, any number of operators can have read-only access to a data 

structure through pointers. The run time system keeps a reference count on tokens; any 

token that enters an operator through a destr input will be guaranteed to have no other 

references. This restriction is enforced by copying the structure when more than one 

reference currently exists. 

Destructive inputs allow very efficient updating of a data structure through side­

effects, while still maintaining the purity of the functional model. The programmer who 

is concerned about efficiency must avoid copying by ensuring that only one copy of the 

token to be modified will exist when it enters the destructive input. Here is an example 

of an operator that destructively increments a particular element in a vector: 

VECTOR •increment_vector(vector, position) 

destr VECTOR •vector; 

int position; 
{ 

vector->contents[position] += 1; 

return(vector); 
} 

3.3 Macros 

An important goal of the Delirium language is to support convenient ways to manipulate 

large data structures. The macro facility is helpful, a.s can be seen from an example. 

Suppose we wish to perform parallel computations on an array using a fork-join control 

structure. To avoid repeating the same construct many times, the general idea can be 

expressed a.s a macro: 

macro map(array,op,extra_arg) = 
let <s1,s2,s3,s4> = array_split(array) 

in array_gather(array_apply(op,sl,extra_arg), 

array_apply(op,s2,extra_arg), 

array_apply(op,s3,extra_arg), 

array_apply(op,s4,extra_arg)) 

A macro invocation is replaced by the body of the macro, substituting arguments. 

The following call: 

map(an_array,flatten,histogram) 

ha.s the same effect a.s: 
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let <sl,s2,s3,s4> = array_split(an_array) 

in array_gather(array_apply(flatten,sl,histogram), 

array_apply(flatten,s2,histogram), 

array_apply(flatten,s3,histogram), 

array_apply(flatten,s4,histogram)) 

map applies some primitive operator to each element in an array. The programmer has 

decided that for this application, a good grain size is achieved by dividing the array into 

four pieces. The operator array _split takes an array and returns four commands, each 

of which is handed to array _apply. The second argument is a reference to an operator or 

function that expects two arguments. array_apply walks its piece of the array, applying 

the operator to each element along with the extra argument (histogram in the example). 

Depending on the operation being performed, array _apply or array _split might create 

a second array into which the result of each operation is placed. The four returned values 

are handed to a combining operator and the final result returned. 

Because we are using a shared memory machine., array _split and array _gather 

typically need to do no copying. In general, one of the two must allocate a second block 

of storage that is the same size as the array so that the results can be stored without 

modifying the original (and thus violating the single-assignment restriction). However, 

if array _split marks its array input as being destructive, and no other copies of the 

array exist in the system, the extra storage allocation can be avoided. It is up to the 

programmer to insure that these conditions hold if allocation and copying overhead would 

be undesirable. 

3.4 Example 

Here is the entire Delirium code for a simple circuit simulator, demonstrating high-level 

functions and data structure decomposition: 

main() 
let 

ntimesteps=SO 
init_gates=read_gates() 

wires=read_wires() 

in iterate 
{ 

gates=init_gates,map(gates,simulate_gate,wires,i) 

i=O,i+l 
} 

while less_than(i,ntimesteps), result gates 

The map macro is a slight variation on the one given above, in that it takes two 

extra arguments rather than one. Seven imperative operators are invoked: read_gates, 
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read_wires, array _split, array_apply, array ..gather, simulate..gates, and less_than. 

After reading in the circuit to be simulated, we do fifty steps of iteration. 

The work of simulating one circuit element is done by the operator simulate-gate. 

Here is the C code for it: 

GATE * 
simulate_gate(gatep,wires,timestamp) 

destr GATE •gatep; 

ARRAY •vires; 
int timestamp; 
{ 

} 

int new_val; 

if (gatep->delay_count > 0) 

--gatep->delay_count; 

else 
(•gatep->output_fn)(gatep,timestamp,wires); 

nev_val = (•gatep->compute_fn)(gatep,timestamp,wires); 

if (new_val != gatep->logic_val) { 

if (gatep->delay_count > 0) 

} 

printf("error: logic val change in< 1 prop delay\n"); 

else { 

} 

gatep->delay_count = gatep->prop_delay; 

gatep->logic_val = nev_val; 

return(gatep); 

The simulation repeatedly computes a new value for the output based on the input. 

waiting some number of time steps before a changed value is passed onwards because of 

propagation delay. 

4 Programming Methodology 

We have found that the principles of designing a Madness program are sometimes quite 

similar to traditional software engineering techniques. In a C program, a sign of good 

design is that the main() routine does not do much but call procedures and has few or 

no global variables. Converting such a program to run under Madness is quite straight­

forward. Because global variables are outlawed, any function that needs values from the 
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environment must receive them as arguments and return them when finished. The up­

dated values are then passed to subsequent operations that require them. This sequenc­

ing in Delirium code automatically forces the appropriate ordering on the operations. 

We have found that there are two common types of parallelism. The first is a group of 

tasks that can be done at the same time because they do not depend on each other. When 

the main routine is converted to Delirium, independent tasks immediately parallelize 

because none depends on the results of the others. If each task is a Delirium function, 

the various calls are performed in parallel. 

The second type of parallelism, much more common, is not so easy to exploit. It 

has to do with operations performed on data structures. If expressed in traditional 

imperative programming style, unnecessary dependencies are created that are difficult 

to find. 

4.1 Large Data Structures 

One of the most important issues that must be addressed by a parallel programming 

language is the management of large data structures. In general, a parallel program is 

much more difficult to write than its sequential counterpart. Most applications that are 

time-consuming enough to merit such a painful conversion involve large data structures 

like trees and arrays. 

Many languages have found that "apply-to-all" operations make it easy to express 

complex manipulations of data structures; APL [7] is a notable example in that almost 

the entire language is made up of a set of operators that perform a regular operation over 

an entire array at once. Anyone using such a language quickly realizes the opportunity 

for parallelism that exists in each operation. 

An apply-to-all really consists of two parts: an ordered traversal of the data structure 

and an operation that is to be performed during that traversal. Different computations 

rely on different aspects of the traversal order. For something like file uncompression, an 

algorithm might depend on all prior history to decode a particular piece in the middle 

(though commonly used approaches do not, because of vulnerability to errors). On the 

other hand, in a cellular automaton simulation, a given cell only depends on the values 

of its immediate neighbors. The former is difficult to implement in parallel while the 

latter is simple. 

To take an easy case first, imagine that we wish to compute a new array from an 

existing one by adding three to each element. Rather than doing the addition directly, 

we could define a function add_three: 

for rows = 1 to ROWNUM 

for cols = 1 to COLNUM 

array2[i,j] = add_three(array1[i,j]) 

The advantage to the reformulation is that it can be used with an apply-to-all oper-

13 



ator. 

array2 • do_on_each_array_element(arrayl,add_three) 

We can define an entire suite of functions like add_three, all of which expect to 

be called on a single element of an array and that return an updated element. ·when 

combined with a set of parallel apply-to-all operators, the update functions allow a variety 

of powerful array manipulations to be expressed compactly and executed efficiently in 

parallel. The programmer can write functions that expect an element and return an 

element, unconcerned about whether they will be called during a parallel array walk or 

a sequential one. The parallel application operators can have different versions, each 

carefully tuned for a different architecture. 

A more complicated walker will handle operators that rely on certain ordering prop­

erties. For example, an operator might rely on sequential execution within a given row; 

the walker can accommodate this by traversing many rows at the same time while still 

enforcing the constraint that each row be done sequentially. 

Going back to the simple example that operates on each array element, there are still 

two problems. The first is that an apply-to-all is far too inefficient, if every element is 

done on separate processors, because of the communication overhead. This is solved in 

Delirium by divide an array into pieces and handling each piece entirely on one processor. 

The array example earlier in this paper shows how this can be done. The code to invoke 

the array walker need not concern itself with such details, however, as it is only concerned 

with the ordering dependencies guaranteed by the walker. 

The second problem is that this section has assumed two arrays, where the results 

of operating on the first are placed into the second. When very large arrays are being 

used, it can be unacceptable to require that enough storage be allocated for two copies. 

Furthermore, if only a small amount of data is to be changed, it is absurd to require that 

the rest be copied. To solve this problem, we have destr arguments; they notify the run 

time system that the same storage will be used for an incoming token as an outgoing 

one. The semantics from the functional standpoint are that the original data structure 

is cast aside and a new one returned, but in fact the space is reused. The integrity of 

the model is maintained because its only requirement is that changes made within one 

operator cannot affect another. If a data structure that goes into a destructive argument 

is referenced anywhere else in the dataflow graph, a copy is made. 

Our general approach for managing large data structures is to define an operator 

to divide the structure into appropriately chosen pieces, another to operate on each 

piece, and a third to merge the pieces. The operator being applied to each element 

of the structure relies on the ordering dependencies of the process as a whole; a given 

implementation of a walker can be based on the characteristics of the target machine. 
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5 Compilation Strategies 

Having discussed Madness programming in general terms, I will give a large concrete 

example by explaining how the compiler is implemented. First, though, it is necessary 

to understand the transformation that the compiler performs. 

The run time system expects a group offunction templates, each with a corresponding 

graph. Each of these templates describes a closure - a piece of executable code and 

the environment in which that code is to execute. The code in this case is a dataflow 

subgraph, and the environment is a set of bindings for the free variables used by the 

subgraph. The template description includes the subgraph as a list of nodes with arcs 

between them, the environment bindings needed, and a set of arcs to route constants. 

function arguments, and environment values. The task of the compiler is to convert a 

set of functions into a set of templates. 

5.1. Basic Compilation 

There are five primitive constructs of the language that must be converted appropriately. 

Once the graph is constructed, it is optimized in various ways. The final result is then 

output to a file in a special format recognized by the run time system. 

5.1.1 Function Definition 

As a first approximation, imagine that all function definitions convert to exactly one 

closure template. If the compiler were to adopt this approach, the output graphs would 

be rather inefficient due to function management overhead. Later optimization passes, 

as described in Section 5.2, improve matters by collapsing functions together. For now, 

however, we will make a few simplifying assumptions. 

Functions are normally defined within a let statement. The function may use iden­

tifiers that are defined outside of its body; these are called "free variables" and the 

compiler must ensure that the values are available when the function is applied to some 

arguments. Because functions can be bound to variables and passed as arguments or 

return values, the program may invoke a function outside the lexical context where it was 

defined. The environment variables used in the function's body are no longer present, 

but they are needed to carry out the evaluation. 

The solution is to pass around more than simply the function: the function is packaged 

together with an environment containing bindings for all the free variables needed. This 

package of function and environment, a closure, is constructed by a special kind of 

dataflow graph node called the closure constructor. Each function in the program is 

compiled into a template, the inde..x of which is given to the constructor to put into the 

closure. In addition, the value of each free variable is passed in. The operator packages 

this inf9rmation together and outputs a token containing the closure. Such a token may 

be passed around the graph just like any other. 
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Figure 1 demonstrates the creation of a closure for black, based on the following 

code fragment: 

let basil = 6 

black(x) = some_computation(x,basil,salt,pepper) 

in 
blue(black) 

The identifiers salt and pepper must be bound within the environment when this 

fragment is evaluated. 

Functions defined at the top level are handled somewhat specially, because they 

are not created within the framework of an existing function. Each top level function 

is converted into a template with no external bindings, and any reference to another 

top-level function is resolved at compile time. The system is not (yet) interactive, so 

incomplete binding is not permitted. 

5.1.2 Function Application 

A function application is handled by another special operator called an expander. There 

are two types of invocation; if the called function is known and doesn't need a closure, 

we embed its template index in the graph and do the call directly. If a closure is needed, 

the token that represents it is passed to the expander, along with any arguments for the 

called function. The expander has the effect of replacing itself in the data.fiow graph 

with the expanded graph of the passed-in closure. The template contains information 

about which of its nodes needs each environment variable and argument; the run time 

system handles the bookkeeping when an expander is scheduled for execution. 

If an insufficient number of arguments are provided, the expander automatically 

creates a curried function. This new function expects the remaining arguments needed 

by the original one, executing as expected when they are provided. 

Figure 2 demonstrates the effect of an expander node when entered by the closure 

created for black in figure 1. In this case, the closure was invoked with the argument 

100 as in: 

let blue(func_arg) = func_arg(lOO) 

in 
<the previous fragment> 

To evaluate a function invocation, the system must have access to the free variables 

and the arguments. The former are carried around in the closure, which is created at 

the time of function definition. Because Delirium is a functional language, environment 

values can not be changed by execution as they might be in an imperative language. 

The arguments are supplied to the expander node at the time of invocation, as shown 

in the figure. 
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5.1.3 Let Bindings 

Each variable binding in a let generates a subgraph corresponding to the expression on 

the right hand side of the equals. Each use of a let-bound variable represents another 

arc from that subgraph. The subgraph result may be sent to an arbitrary number of 

target nodes within the function template. 

Figure 3 shows the dataflow graph that corresponds to the following code fragment: 

let red = <exprl> 
green = <e'Xpr2> 

purple = <expr3> 

in 
some_operator(14,red,green,purple) 

Multiple variable bindings are a little more difficult: 

let <red,blue> = operator(x) 

in someother_function(red,blue) 

Delirium semantics requires that operator return a multiple value package with two 

elements. Such packages are first class, so if x was defined elsewhere to be a two element 

package operator could legally pass it through. The compiler looks up the definition for 

operator to decide how to convert the construct. If operator returns only one value, 

that is assumed to be a package and is automatically routed to a decomposition operator 

with two outputs. If operator returns two values, they are used directly. Any other 

number of outputs is an error. 

If an operator that returns multiple values is ever used outside of a multiple value 

binding, its outputs are automatically routed to a package constructor and the package 

is considered to be the return value. 

5.1.4 Conditionals 

There are also two control constructs, the first of which are conditionals. Compilation of 

conditional expressions is a bit complicated. There are two main sources of difficulty: the 

dataflow model used by Madness and a desire to avoid unneeded computation. Graphs 

are executed very quickly by the run time environment due to a strategy we call ''template 

activation," which is detailed elsewhere [14]. This strategy is based on the idea that a 

node fires when all of its arguments have arrived. The other complication is that one 

of the two clauses of a conditional will not be needed. In our experience, it is almost 

universally true that the test clause requires much less computation than the two result 

clauses. We therefore decided to evaluate the test clause first, followed by only the 

appropriate result clause. Obviously we could evaluate both and choose the result at the 
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end, but we felt a. more efficient policy was worth the extra work necessary to implement 

it. 

We had to add one departure from the pure dataflow model to accomplish our goal: 

null tokens. These are tokens that do not have any value and are used simply as place­

holders to cause a node to fire. The simplest way to use null tokens would be to let 

them cascade through the graph, handled as a. special case by the run time system to 

avoid any operator execution. We decided to improve on that by introducing null token 

forwarding as well. Any arc in the graph can be annotated with a forwarding address; 

when the run time system is about to output a null token onto an arc with forwarding, 

the token. "jumps" directly to the specified arc. With this facility in place, we can now 

compile conditionals efficiently. 

Because we are dealing with a dataflow graph, any node with only constant inputs 

or with none is scheduled for execution as soon as a template is expanded. We would 

have needed major changes to our model to prevent that from happening. However, we 

suspect that most long computations will require input from the environment, and these 

we can prevent from e..xecuting by introducing a new kind of special node we call a. gate. 

There is one gate each for the true and false clauses, and any variable binding used by 

either is routed through the gate. Each gate also has an input from the test expression; 

the gate favored by the test (the true gate if the test is true, the false gate otherwise) 

outputs the values of all the environment bindings routed through the gate. The other 

gate outputs a. null token along the first output arc. 

The first output arc of each gate is set up to forward null tokens to the appropriate 

input of another special kind of node called a collector. The collector has two inputs, 

passing through the non-null token. 

While this strategy does not totally eliminate unnecessary computation, we are confi­

dent that most cases will be caught. A careful programmer can ensure that a particularly 

expensive computation will not be unnecessarily computed by referencing any environ­

ment variable. 

The strategy is most easily understand with a graphical example. Figure 4 shows the 

graph that corresponds to the following code fragment: 

let x = 12 
in 

if iseven(x) then <true expr> 
else <false expr> 

The fact that x is passed to the expression graphs through the gates indicates that 

both expressions use the binding. 

18 



5.1.5 Iteration 

Traditional iteration does not fit within a functional context. Delirium uses the same 

solution that was adopted by dataflow languages like SISAL [16], where each "iteration" 

is a function call. The value of the iteration variables can be updated each pass through 

the loop without violating the functional model. The iteration function is always tail 

recursive, so the compiler will mark the call appropriately. Tail recursive calls are handled 

very efficiently by the run time system, costing little more than a normal node scheduling. 

Scheme [17] uses the same approach to handle iteration. Here is an example of the 

conversion: 

iterate { 

} 

x = "alpha", succ(x) 
y = "joe", parent (y) 

while not_done(x,y), return y 

is converted to: 

let iterator(x,y) = 
if not_done(x,y) then iterator(succ(x),parent(y)) 

else y 

in 
iterator("alpha", "joe") 

5.2 Optimization 

One of the main goals of Pythia was to explore the optimization of dataflow graphs 

using standard compiler techniques. Out of the many candidates for inclusion. I chose 

four that seemed particularly applicable. There are others that might have been worth 

including, such as strength reduction. but they require a great deal more analysis of the 

operators than is currently feasible. The pre-processor would need to be much more 

sophisticated if such optimizations are to be done. 

The use of standard optimizations on dataflow graphs has been discussed in the 

literature [19] [18]. This seems like a useful area for further research, as the future of 

functional languages depends heavily on improved compilation strategies. 

The following sections describe each of the optimizations performed by the compiler. 

Section 6.3 gives a detailed explanation of the implementation. 

5.2.1 Inline Expansion 

A function application involves a fair amount of machinery to create and expand the 

corresponding closure, so it is often more efficient to expand small functions in place. 
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To make a closure, the environment bindings must be passed to a constructor node and 

the output token then given to an expander. Closure construction is quite fast, but 

expansion involves more overhead (see Section 7 for the costs of various run time system 

actions). 

Some programmers use a locally defined function as a notational convenience, equiv­

alent to a local lambda in LISP. There can be many such functions and it would be 

inefficient to convert each into a closure. The compiler uses a simple heuristic to decide 

whether to expand a call. If the function requires a closure, it will have been marked 

in a previous analysis pass and no expansion is done. Only relatively small functions 

are expanded, to prevent exponential growth of a call-intensive program. The cut-off 

parameter is tunable through a command line argument; after some experimentation, 

we have settled on a 10 node subtree as the largest function to expand and that seems 

to work well. We expect to try a range of values as we move to other large applications 

with differently structured Delirium source. The number may be somewhat architecture 

dependent as well, though this has not been true on our existing platforms. 

To gain the maximum benefit from inline expansion, Pythia does it repeatedly until 

fixpoint (i.e. the pass executes without making any changes). The general idea is that 

call sites suitable for expansion are marked in a first pass over the tree. Two expansions 

must not come into conflict with each other, so Pythia does not expand a call if there 

is any possibility that a call site within the called function will also be expanded during 

this pass. Avoiding the problem requires a recursive traversal of the called function. 

After all sites are marked, an expansion pass replaces each marked call with the body 

of the function. To avoid scope difficulties, a let is wrapped around the copied body 

with appropriate renaming. Here is a fragment that demonstrates the problem: 

let misc(y) = 
let x = 10 
in some_func(y) 

X = 20 
in misc(x) 

After the straight-forward expansion. we would get the following: 

let x=20 
in let x=10 

in some_func(x) 

Notice that someJunc is called with the value 10 instead of the original 20. The 

difficulty is caused by the let binding within the body of mise that has the same name 

as the actual parameter in the call. The solution to the problem is to do a systematic 

renaming of the formal parameters. Each of the argument expressions is bound to the 

new name and references are modified during the copying. A correct expansion of the 

last example would be something like this: 
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let x = 20 
in let y_1234 • x 

in let x • 10 
in some_func(y_1234) 

The renaming guarantees that some...:func will see the correct value regardless of 

scope problems. The extra level of indirection introduced by the let ha.s no effect on the 

number of nodes in the final graph, because variable let-bindings are collapsed during 

compilation without adding any overhead. 

5.2.2 Common Sub-Expression Elimination (CSE) 

CSE is particularly useful and straight-forward in a functional language because no side­

effect analysis need be done. It is somewhat less useful in Delirium, which is used to 

express control structure rather than computation and is less likely to contain many 

suitable sub-expressions. However, I decided that CSE wa.s worth implementing because 

it is a traditional optimization and could be useful if numerous symbolic constants were 

used. The process is the same for Delirium a.s for any other functional language- if two 

expressions look the same (after substitution for free variables), they are guaranteed to 

evaluate to the same result. The only exception is non-deterministic operators, which 

prevent CSE from being done. 

Notice that CSE corresponds to finding the common expressions and binding them 

in a let. For example, the following code fragment: 

let x = computel(update(john)) 

y = compute2(update(john)) 

in 
compute3(x,y); 

can also be coded this way: 

let temp = update(john) 

x = computel(temp) 

y = compute2(temp) 

in 
compute3(x,y) 

5.2.3 Constant Propagation 

Delirium constants include integers, rea.ls, and strings. When they appear, the compiler 

can sometimes trim the size of the graph by propagating them through bindings and 

applications. 
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5.2.4 Dead Code Elimination 

Code that is "dead" (i.e. unused) is easily identified in dataflow graphs because by 

definition there is no path from the dead node to the function's return node. This could 

happen if a let binding is created but not used in the body, for example. In terms of 

traditional flow graphs, a node will be pruned if its result does not reach the return node. 

Pythia will eliminate calls to non-deterministic operators that do not contribute to 

the final value, so side-effecting dummy calls must pass their return values to some 

expression that affects the function's return value or those calls will be removed. 

6 The Compiler Design 

The compiler is conventional in basic design, involving multiple passes over an abstract 

syntax tree. However, incremental updates to a large tree are not natural operations to 

perform in a functional language. Imagine a compiler optimization like inline expansion. 

To decide whether a given function call should be expanded, the compiler needs to know 

how large the invoked procedure is, what external variables it needs, and perhaps how 

many other call sites exist. A different optimization will need other information. 

If a pass is to be implemented by walking the tree, the walk must be done in the right 

order so that any necessary external information is computed before-hand. Sometimes 

there are ordering constraints on the transformations, while other times all the nodes in 

the tree can conceptually be updated in parallel. 

6.1 The Tree Data Structure 

For apply-to-all operations to be generally useful, they must manipulate a data repre­

sentation that is flexible enough to handle a broad range of applications. I chose to use 

the following C structure to represent a tree node: 

typdef struct tree_node { 

int node_type; 
int veight; 
int pass_veight; 
char *description; 
int number_of_children; 

struct tree_node *children[]; 

char *extra_info; 
} NODE; 

Every node is identified to be of some particular type, so the tree walking routines 

can invoke their client functions on only particular kinds of nodes. To use a node, the 
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description pointer is cast into the appropriate type of structure pointer, based on the 

node type. 

I chose to have an array of child nodes, rather than a linked list, because the compiler 

commonly accesses children in an unpredictable order. It is much more efficient to allow 

direct addressing. 

The weight entry is an approximation. The routines that decompose a tree for 

parallel processing use this number to balance the computational load. Sometimes the 

expected cost of a computation for a particular subtree has little to do with its size. 

For example, during inline expansion we may be handling only a few call sites scattered 

over the tree,· each of which represents a lot of work (copying the body of the callee ). 

To improve balance in these cases, the data structure has a field called pass_veight. 

This field can be set by an earlier pass to accurately reflect the cost of handling a 

subtree, without affecting subsequent passes for which subtree size is a good predictor 

for execution time. As was explained above, inline expansion passes consist of two 

steps. The first, which marks the application nodes suitable for expansion, also sets the 

pass_veight field to reflect the real amount of work to be done. 

6.2 Tree Walking Operators 

We need to process the tree structure in parallel, but the ordering dependencies are dif­

ferent in the various passes, so I designed three tree walking primitives. These traverse 

the tree, applying a given operator at each applicable node. They are implemented by 

dividing the tree into several subtrees, some set of which is handed to each applica­

tion operator. Once each piece is processed, they are merged again and the resulting 

(modified) tree is returned. The tree input is marked destr, because of the destructive 

changes, but the compiler is quite careful to ensure that there is only one copy of the 

tree in existence when it enters a walker. 

• top-down update - walk the tree, updating each node as it is encountered. An 

update can rely on updates having been completed beforehand for all of its ances­

tors. The operator is given the node to update and an extra argument that is the 

same for the whole walk. 

• inherited-attribute update - walk the tree, computing an inherited attribute as 

the traverse moves down. For each node, hand the operator an information package 

that represents all computations on the way down. 

• synthesized-attribute update- walk the tree from the bottom up, doing an update 

of a given node based on the information that has been computed for each of its 

children. 

These functions are macros; they expand into a block of code that makes calls to 

special operators that divide, traverse, and recombine the parse tree. To show in more 
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detail how a walk is implemented, I will explain in detail how the tree is divided during 

a top-down update pass. 

At the top level, we have the Delirium code that expresses the control structure, a 

simple fork-join: 

macro tree_walk_update(tree,node_type,operator,extra) 

let <ut1,ut2,ut3> = tree_up_chop(tree,node_type,operator,extra) 

in tree_merge(tree_up_op(utl,node_type,operator,extra), 

tree_up_op(ut2,node_type,operator,extra), 

tree_up_op(ut3,node_type,operator,extra)) 

This macro is given four arguments: the tree to operate on, the type of node this pass 

is applicable to, an operator that updates a tree node appropriately, and an extra argu­

ment that the operator may need. Here is pseudo-code for a sequential implementation 

of the walker: 

update_walk(tree,node_type,operator,extra) 

if the tree node is of type node_type 

call operator(tree,extra) 

for all children 
call update_walk(child,node_type,operator,extra) 

Note that we do not guarantee any ordering on traversals of the child sub-trees. All 

ancestors of a node are guaranteed to be seen before the node, but siblings can be seen 

in any order. This is the crucial property that allows updates to be done in parallel. 

Here is the pseudo-code for the tree...up_chop routine: 

I* tree_up_chop - walk the tree, constructing FAN_OUT sets of 

* sub-trees, each having approximately the same total weight. 

*I 

tree_up_chop() 
{ 

node_type = get input telling us what kinds of nodes to operate on 

tree = get input giving tree 

op = the operator we're applying during this walk 

make an array of tree packages 

target = the total weight of the tree divided by the number of pieces 

call recursive_allocate(tree,package_array,node_type,op,goal) 

output packages 
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} 

recursive_allocate(tree,package_array,node_type,op,target) 

{ 

} 

if this tree node's type == node_type 

call op(tree) 

for i = 0 to number of children of the tree node 

if child's weight is at least 113 of the target weight 

put the child in the package that has the least total weight 

update the chosen package's weight 

else 
recursive_allocate(the child,package_array,node_type,op,goal) 

To ensure that the sets of subtrees allocated to each processor are roughly equivalent 

in weight, every tree node is annotated with the size of the subtree below it. We divide 

the total weight of the tree by the number of processors we will be using. The tree 

traversal runs until we find a subtree that is less than one-third of the desired weight. 

After each of the sets of subtrees has been similarly handled, they are merged into 

a single tree again. In the case of the top-down update walk, there is no work left 

to perform so the merge simply returns a pointer to the entire tree. The synthesized 

attribute walk, on the other hand, must run over the crown of the tree finishing the pass 

now that the values for the subtrees have been computed. Here is the pseudo code for 

that routine: 

syn_merge(op,extra,package_array) 

{ 

} 

op = get input giving op to work on 

extra = get input with extra info 

package_array = get all the packages 

get the original root from one of the packages 

value = syn_walk(root,op,extra,package_array) 

output the root 
output value 

I* syn_walk - walk the tree, computing a synthesized attribute. When 

* you encounter a node that has been spawned off, use the result value 

* from the package. 

*I 
syn_walk(tree,op,extra,package_array) 
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{ 

} 

if tree was clipped by syn_chop 

return attribute computed for it (which is in one of the packages) 

else if tree has no children 

return op(tree,NULL,extra) (the 2nd arg is info from children) 

else 
make an info array large enough to hold the value from each child 

for i = 0 to num_children-1 

info[i] = syn_walk(i'th child,op,extra,package_array) 

return(op(tree,info,extra)) 

The walk does a normal synthesized attribute computation, except that subtrees 

that were clipped are not traversed. The work for that subtree has already been done in 

syn_op and the attribute can be taken out of the appropriate package. 

Notice that we are destructively modifying the tree, so we mark the inputs appro­

priately; the system will ensure that structures are copied if necessary. The compiler 

ensures that no such copying is done by having each destructive pass operate on the re­

sult of an earlier one. Sequential dependencies ensure the proper sequencing and prevent 

copying. 

6.3 Compiler Passes 

The compiler consists of several passes. The following sections describe each one in 

detail, sketching the algorithms used to implement them. The complete Delirium code 

for the compiler appears in Appendix III. 

6.3.1 Building the Tree 

The first step in compilation is to build the parse tree. I decided to use LEX and YACC 

originally, expecting to recode the passes in parallel if they proved to be a bottleneck. 

Various research projects have investigated parallellexing [21] and parsing [9] [22] with 

varying degrees of sophistication. It proved to be unnecessary to adopt a clever solution, 

because YACC is able to run in parallel under Delirium as long as the C compiler on the 

target machine allows global variables to be placed in unshared storage. Each processor 

runs a self-contained YACC; the subtrees are merged into a single parse tree at the end. 

The process is as follows: 

1. Lex the source code into an array of tokens. 

2. Do a fast, dumb recursive descent parse based on delimiter matching to divide the 

source into top level functions. 

3. Allocate contiguous ranges of top level functions to a set of buckets. 
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4. Hand each bucket to YACC to get a. parse tree for that fraction of the code. 

5. Generate an overa.ll parse tree from the partial trees. 

This yielded very good loa.d balance ( a.s will be discussed below) for parsing, and 

wa.s much simpler than any complex para.llel parsing strategy. I decided that lexing 

represented such a. sma.ll fraction of the compilation time that I could ignore it. 

The only thing interesting about the conversion of source to parse tree is that the 

tree is built out of the tree nodes described above. This lets generalized walkers process 

the tree without understanding its structure. Macro definitions and ca.lls are collected 

but not yet expanded; that is taken care of in the next pa.ss. The result of this pha.se is a 

largely unannota.ted parse tree; only the bare textual information is represented, without 

any analysis. References are unresolved, free variables uncollected, and so forth. 

6.3.2 Macro Expansion 

The next step is to expand a.ll macro invocations. Currently, the semantics are to do 

a. straight replacement with no renaming. Every use of a. macro argument in its body 

is replaced by the corresponding actual parameter expression. If scope conflicts prove 

to be a nuisance, macro e..xpansion can be made similar to inline expansion of function 

calls. 

The expansion pa.ss is run repeatedly until fixpoint, to a.llow macros to ca.ll other 

macros. The pa.ss is done with a synthesized attribute walk that computes a boolean 

that reports whether any expansions were performed. 

6.3.3 Environment Analysis 

The environment is analyzed in several pa.sses. The final goal is to annotate each use 

of a variable with the corresponding definition site and to mark functions that require 

closures. This second ta.sk is not as ea.sy a.s it might seem. The rule for closures is simply 

that a.ll functions must be closed that depend on an environment or are pa.ssed as an 

argument or return value. The difficulty arises in mutual recursion. Suppose we have 

the following Delirium code: 

let one(x) = something(tvo(x)) 

tvo(y) = if pred(y) 
then one(y) 
else y 

in one(1) 

During the reference reconciliation phase, the compiler will mark one a.s having the 

environment variable tvo and vice versa. Neither function rea.lly needs a closure, how­

ever, because one and tvo are known to each other directly. To avoid creating unneces­

sary closures, the compiler iterates a closure marking pa.ss to fi.xpoint. 
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Gather Free Walk the tree bottom up, gathering references to identifiers. When 

bindings are encountered (like let bindings or function arguments), eliminate them from 

the list that is passed upwards. Annotate each function definition with the free variables 

referenced within it. The same thing happens at conditionals, to set up the gates that 

were described in Section 3.1.5. 

Gather Free is not very intelligent. It thinks that functions have many more unbound 

variables than they do because it doesn't know about operators or unclosed functions. 

The reason it can't be given that information is that scope rules may hide definitions 

from the bottom of the tree. 

Reconcile References To resolve references, each variable reference is updated with 

a pointer to its binding site (or def site). There are six types of bindings: operator 

definitions, let-bound variables, let-bound functions, function arguments, conditional 

shadow variables, and environment variables. The last two of the six are not "real" def 

sites; they are convenient fictions for the compiler and contain pointers to some other 

def site. By following a chain of shadow variable and environment variable pointers, one 

will always eventually end up at one of the first four kinds of bindings. 

Reconciliation is handled by an inherited tree walk. The operator is given a stack 

that represents the set of identifiers with known bindings. When a use is encountered, 

the operator does a lookup and annotates the use with its definition site. The stack 

semantics of the lookup ensures that the lexically nearest definition will be found first. 

When new bindings are encountered, they are added to the stack and passed down 

to the children. At a let statement, add all the bound names to the stack for each 

child. If we have a function definition, also add the arguments during the traversal of 

the corresponding function body. 

Mark Extra Because the Gather Free pass blindly made shadow and environment 

variables for everything, we have many extra definitions that should be eliminated. Mark 

Extra is a top-down update walk that marks unnecessary definition sites that can be 

eliminated. 

As was explained previously, it is not immediately apparent whether a given function 

should be closed or not. Mark Extra must make a decision, because closed functions are 

invoked via their closures that are shadowed or put into the environment when necessary. 

The third argument to Mark Extra tells it how to handle references to functions. The 

options are: always assume every function is closed, always assume every function is not 

closed, and look at the needs_closure field of the function. 

Mark Extra is called three times during analysis, once with each of those arguments. 

The first time, the conservative assumption gets rid of all the easily prunable cases. 

The second pass is optimistic, mistakenly marking many required definition sites as 

unnecessary. After Mark Closures uses this optimistic information to mark every closure 

properly, the final call to Mark Extra has the information it needs to do correct and 
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reliable annotations. 

Prune Extra Once a. set of definition sites have been marked unnecessary, the pruning 

phase eliminates them. This is a. simple matter of removing the site from the linked list 

in either a. conditional gate or a. function definition. 

The third argument to the pruning operator tells it whether functions are properly 

marked with the needs_closure flag. If so, references to unclosed functions are pruned 

correctly. 

Mark Closures The algorithm for determining whether a. function needs a. closure 

requires iteration to fi.xpoint because it begins with the optimistic and usually incorrect 

assumption that all functions are unclosed. Each pass examines the free variables of 

every function that is marked unclosed. If any of the variables refers to anything other 

than an unclosed function, the needs_closure flag is set. Any function that calls a 

newly marked function will be picked up on the subsequent pass. 

The pass is a. synthesized attribute walk that reports whether any changes were made. 

The iteration continues until the return value is false. 

6.3.4 In-Place Expansion 

The expansion pass iterates to fixpoint. Each pass is tw~part- a. marking phase and an 

expansion phase. As explained previously, this distinction is necessary to avoid clashing 

between two expansions during parallel execution. 

The marking phase examines each call site in the graph. A called function may not 

be known - the called function might, for example, be a. variable that was passed into 

the current function as an argument. Expansion is only done for known functions that 

are smaller than some maximum size and that do not require closures. To decide whether 

such a. call should be expanded, the compiler traverses the body of the called function 

looking at all of its call sites. If any of those would cause an expansion, the original call 

site is left unmarked. 

When exploring the body of the called function, each of its call sites must in turn be 

traversed recursively. This exploration could continue infinitely for recursive or mutually 

recursive functions. In a. large call graph, it might also be very time consuming. The 

first problem could be solved by marking functions as they are encountered, but tbis is 

illegal in Delirium because the operator is not permitted to write into those other parts 

of the tree. Furthermore, it could easily be true that the same function was called from 

different places; two marking traversals could interfere with each other and get incorrect 

results. 

The solution I adopted is to place a depth bound on the recursive walk. This prevents 

both infinite walks and overly lengthy ones. Here is an example: 
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let a(x) = a_function(x) 

b(x) = compute(a(x)) 

in b(some_value) 

The invocation of b causes the compiler to examine the body of b. This recursively 

involves the traversal of a and compute. Suppose the latter requires a closure, so it is not 

a candidate for expansion. The algorithm will mark the original call to b for expansion 

if and only if it is sure that the call to uunction will not be expanded. Suppose that 

a_function has a deep call graph that is not fully explored within the depth bound. In 

that case, the walk would report that it isn't sure what will happen. However, when 

the compiler encounters the call to a_function directly, it will go slightly deeper into 

the call tree because the depth bound will not have been decremented twice. The extra 

search may reveal that the expansion can be performed safely. To avoid problems, a call 

to a function containing a possible expansion is never expanded. 

On the other hand, suppose the compiler can determine that calls to both a_function 

and compute will not expand. In that case, on the first expansion pass the call within 

the body of b will be expanded. During the second pass, the call to b also expands, 

yielding this final result: 

compute(a_function(some_value)) 

It is obviously much more efficient to evaluate this expression than the original one, 

which involved the creation of two closures and the machinery to invoke them. 

6.3.5 Constant Propagation 

Every node that represents the use of a variable is examined. If the variable is bound to a 

constant in a let construct (either directly or through a definition site chain), the variable 

use is replaced by the constant. The pass is a synthesized attribute walk that returns a 

boolean indicating whether any changes were made. The constant propagation operator 

either leaves the existing node, if the binding is not a known constant, or replaces that 

node with a constant node. 

The compiler iterates the propagation until all replacements have been pushed through. 

Currently inter-function constant propagation is done only for e..xternal bindings. It 

might be interesting to push constants through calls, when possible, but I tend to doubt 

whether it would be much of a gain. 

6.3.6 Mark Used 

After inline e..xpansion, some function definitions are no longer used. The compiler simply 

marks them unused but leaves them in the tree, primarily for debugging purposes. ~o 

further computation is performed on the unused functions. 
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6.3.7 Common Sub-Expression Elimination 

CSE is performed on every function definition by a top-down updating walk. Each of 

the functions that are left in the tree at this stage in compilation correspond to a closure 

template in the output, so inter-function CSE is not possible (and I doubt it would 

be useful in any case). The operator walks the function's subtree in bottom-up order, 

hashing the growing subexpressions into a table. If two entries coincide, the compiler 

checks to see whether the corresponding sub-expressions are identical. When they are, 

the compiler annotates one as being identical to the other. At graph conversion, one of 

the subexpressions will generate graph nodes and the value will be sent to both uses. 

Non-deterministic operators prevent CSE from being performed. As mentioned pre­

viously, the compiler guarantees the the number of invocations of such operators will not 

be changed by optimization. Any sub-expressions that contain one are simply ignored 

by this pass. 

6.3.8 Graph Generation 

Each function in the tree is converted into a closure subgraph; the subgraph is expressed 

within the tree as an annotation to the function definition. The conversion process 

traverses the tree, annotating each tree node with a graph node that outputs the value 

for the subtree rooted there. For a detailed understanding of the conversion process, see 

the (heavily commented) code. 

6.3.9 Dead Code Elimination 

An update walk is done on the tree, applying the pruning operator to the subgraph at 

each function definition. The traversal is a recursive walk that marks each node with 

the boolean reaches_return. When a node is encountered, the compiler looks at every 

node it outputs to. If one of them is the return.node or has its reaches_return field 

set, the boolean is set TRUE. Otherwise every node is marked as having been seen and 

the recursive walk is performed on each target. If any of them reaches the return node, 

the boolean is set for the current node. Every node that does not have the boolean set 

is pruned out of the graph. 

6.3.10 Graph Output 

Output is done by a sequential operator. It outputs a set of templates, each representing 

a closure (the BNF for the intermediate form is given in Appendix IV). A template 

consists of a set of nodes with arcs between them, along with three special kinds of 

arcs. The special arcs correspond to function arguments, environment variables, and 

constants. Constants are represented directly so that the run time system can handle 

them efficiently. 
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Given the following simple Delirium program: 

main() 
let a = 10 

b = f (a) 

in operator(b) 

where f and operator are both sequential operators, here is the corresponding tem­

plate description: 

ntemplates: 1 start_template: 0 

template index: 0 n_env: 0 n_const: 1 n_args: 0 n_arcs: 3 

n_nodes: 3 

arc num 0 to 1 
arc is word: 1 

arc is destr: 0 

fwd null: -1 -1 

constant type: 0 data: 10 

node 0 intr: 0 type: 1 template: 0 name: return_node 

noutputs: 0 

node 1 intr: 0 type: 0 template: 0 name: f 

noutputs: 1 
ncopies: 1 
arc num 0 to 2 

arc is word: 1 

arc is destr: 0 

fwd null: -1 -1 

node 2 intr: 0 type: 0 template: 0 name: operator 

noutputs: 1 
ncopies: 1 
arc num 0 to 0 

arc is word: 1 

arc is destr: 0 

fwd null: -1 -1 

1 Performance 

The performance of the compiler can be analyzed from two perspectives. On the one 

hand, Pythia is a. parallel application, running under the Delirium run time system. On 

the other, it is an optimizing compiler that can be evaluated by the quality of its output. 
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7.1 Pythia as Application 

The first time we ran the compiler in parallel, speedup figures were disappointing. The 

run time system has a timing facility that allows the Delirium programmer to profile 

an application. Looking at the costs of executing each operator, there were two obvious 

problems. In some cases, the load was not very well balanced between the parallel 

computations. The other problem was sequentially executing operators that took longer 

than expected. After a few days of modifications, the figures were much improved -

running on the Sequent Symmetry, we achieved a 1.5 speedup with two processors, 2.1 

with three. Speedup is expressed relative to the sequential version of the compiler. 

The sequentially executing parts of the compiler made up roughly one-quarter to 

one-third of its run time. The remainder parallelized well; parallel tree walking proved 

to be highly effective in decomposing the load across processors. Here, for example, are 

the timings of each operator during a synthesized attribute walk applying mark_2_expand 

(in microseconds): 

call of tree_syn_chop took 2224 

call of tree_syn_op took 10888 

call of tree_syn_op took 13533 

call of tree_syn_op took 13759 

call of tree_syn_merge took 3295 

Notice that the load balance is nearly even, and that tree division and merging are 

considerably cheaper than the computations. Approximately half of the time spend 

in tree...syn...merge involves useful work that must be done in any case. The rest of 

the merge, as well as the time needed to chop the tree, represent overhead imposed by 

walking the tree in parallel rather than sequentially. Each operator also reads inputs and 

generates outputs, adding another millisecond or so of overhead. In total, the parallel 

version is roughly 10 percent more expensive. The speedup for this particularly pass 

executing on three processors vs. the original sequential code is 2. 

7.2 Graph Optimization 

There are two kinds of nodes in the graphs produced by Pythia: normal nodes that 

correspond to user-defined operators and extra nodes that manage control. The latter 

include conditional gates. expanders, closure constructers, and so forth. Pythia is not 

involved in the compilation of user operators. so the optimizations are all designed to 

reduce the number of extra nodes that are added. The optimal output graph would only 

have nodes corresponding to user-defined operators. 

The most expensive overhead introduced by the compiler involves the creation and 

invocation of closures. Table 1 shows the costs of various actions handled by the run 

time system while executing on a Sequent Symmetry. 
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II operation j time (in p. sec) II 
Node Scheduling 150 

Closure Allocation 1500 

Closure Fill 1500 

Empty Closure Invocation 1500 

Full Closure In vocation 2500 

Cached Closure Invocation 600 

Tail Recursive Invocation 400 

Table 1: Run Time System Overhead 

The numbers are averages, based on the microsecond clock timings we have gathered 

for a variety of applications. The first field shows tb.e time to schedule an ordinary node 

with two inputs and two outputs. The other fields break down the cost of managing 

closures. 

A Delirium function call corresponds to the dynamic expansion of a graph at run time 

via an expander node. There are two ways an expander node can acquire the graph: a 

token representing the graph can be passed in as an argument, or a direct reference to 

the target graph can be hard-wired into the node at compiler time. The latter approach 

only works when a known environment-less function is being called. 

In the general case, where a closure token is to be passed to an expander node, 

the token must be allocated, filled, and then the closure invoked. The entire process 

requires roughly 5500 microseconds for a large closure. A subsequent invocation of the 

same closure would only require 600 microseconds because of run time system caching -

the 1500 microsecond in vocation creates a set of token buffers that can be reused after 

the closure returns. One such set must exist for each instance of the closure that is 

simultaneously active. 

A direct invocation of the closure eliminates the first two steps and improves the 

efficiency of the third. The first invocation requires only 1500 microseconds; as in the 

general case, an invocation that uses a cached buffer set requires roughly 600 microsec­

onds. 

Tail recursive calls reuse the current buffer set, yielding slightly better performance 

than a cached call. 

Because closure manipulation is easily the most expensive operation performed by 

the run time system, compiler optimizations that reduce or eliminate the extra clo­

sure management nodes have the greatest effect on execution time. The most effective 

optimization is inline expansion, which eliminates the machinery entirely. A 5500 mi­

crosecond operation is replaced by one that requires only 150. 

Another important optimization is closure analysis; by realizing that mutually-recursive 

routines do not have environment variables, the compiler can use the cheaper alternate 
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calling strategy. Constant propagation helps here as well by eliminating unnecessary 

references to variables bound outside the function. 

Unfortunately, none of the real Delirium applications we have written gain much 

benefit from graph optimization. The compiler, for example, is extremely coarse-grained; 

compilation of the control structure for a medium sized applications takes on the order 

of 2.99 seconds on one processor. Of that, 2. 79 seconds is spent inside user operators 

doing useful work. The remaining .2 seconds is overhead - roughly 6.5 percent. When 

optimization is turned off, overhead is increased by 30 milliseconds, adding 1.7 percent 

to the overall run time. 

The optimizations do become important, however, when grain size is reduced. I wrote 

a simple Delirium program to test their effectiveness; it is based on a set of mutually 

recursive functions organized into a loop. Each function iterates several dozen times and 

calls the next in line, using references to constants bound in an enclosing lexical context. 

Computation continues for ten iterations through the loop of functions. I compiled the 

program with and without optimization; the difference in run time was 2.3 milliseconds 

versus 10.1. For application that are extremely fine-grained with a. complex control 

structure, the optimizations yield an important improvement in execution speed. We are 

in the process of implementing some search algorithms that have those characteristics. 

8 Conclusions 

I decided to implement Pythia. in Delirium for two main reasons: to test the resilience of 

our mixed programming paradigm, and to investigate optimization of dataflow programs. 

vVe have proposed a. new way to write programs, based on a. mixture of functional 

and imperative programming. The small programs that we wrote to test our original 

implementation taught us valuable lessons, but ultimately they gave only a superficial 

measure of the model's usefulness. We have begun implementing realistic applications 

in this model and in others, comparing the programming difficulties and resulting per­

formance. We are encouraged by the ease with which we converted a. motion detection 

code [6] written in Fortran to run under our system with near linear speed-up. 

The compiler is currently the largest Delirium application; it clearly demonstrates 

that the control structure of a. large and complex parallel program can often be expressed 

compactly in a separate coordination language. The compiler is roughly 5500 lines of 

code. Of this, 5000 is the same in both the sequential and parallel versions. To switch 

to the parallel version, we remove a 100 line main module and replace it with the 100 

lines of Delirium shown in appendix III a.nd a. 400 line auxiliary module that defines the 

operators. Most of the operator code consists of parallel tree-walking primitives. 

Pythia also shows that parallel tree walking is a. viable approach to implementing a 

variety of tree-based computations in parallel. Once I settled on the three tree walking 

primitives, I quickly grew accustomed to the restrictions they imposed. Because each tree 

manipulation primitive was only concerned with a. single node, the code is fairly short 
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and was quick to debug. I did all my programming on a single-processor workstation 

and, once the tree walking primitives had been debugged, the successive versions of the 

compiler ran immediately in parallel when moved to the Sequent. The deterministic 

behavior was extremly helpful and I never faced a race condition. Having battled non­

determinism many times in past parallel programs, its absence was a welcome change. 

While compilation is not representative of the problem domains we are most inter­

ested in, Pythia is still a useful application because it involves complex manipulations of 

a large data structure. We are convinced that the great majority of parallel applications 

involve such computations and that any useful parallel programming environment must 

be suitable for expressing them. The functional language community has tended to ne­

glect the issue, although some work has been done on arrays, particularly in SISAL [4]. 

Work on other data structures has lagged behind. Arvind has proposed the use of lazily 

updated entities called !-structures [2], but they are difficult to use and to implement. 

The second goal of the project was to investigate optimization techniques for dataflow 

programs. A paper showing the optimization of an intermediate graph description lan­

guage called IFl [19] demonstrated how a number of traditional imperative language 

optimizations can be applied to dataflow graphs. There are some techniques that are 

no longer useful in the absence of side-effects, but any optimization that reduces the 

amount of computation in a program is useful in both models. 

Because of the characteristics of our existing applications, optimization has not had 

a major effect on their execution time. We expect some of our currently evolving appli­

cations, however, to show a real improvement. As the previous section showed, removing 

excess closure creation and invocation nodes can have a significant impact on the amount 

of run time overhead. 

Pythia has met both of its goals. It is an effective tool that we have used extensively 

for the development of a variety of applications, including itself. Parallel tree walking 

has proven to be an effective way to handle the task of compilation. Graph optimization 

has yielded significant reductions in run time overhead, minimizing the impact of the 

system on user code. 
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Figure 2: 
The Expander in Action 
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10 Appendix II: BNF Grammar 

program : function_list 

function_ list function I macro I function_list function 

function_list macro 

macro : 'macro' id args expr 

function : id args expr 

args : < ( I I ) I ' ( 
1 arg_list ') 1 

arg_list : arg_list ',' id id 

expr : conditional I let_stmt iterate I mult_value I func_app 

I macro_call I prim_expr 

let_stmt LET bindings IN expr 

bindings bindings binding I binding 

binding : var_binding I mult_var_binding I func_def 

var_binding : id '=' expr 

mult_var_binding '<' var_list '> 1 '=I expr 

func_def id args '=' expr 

var_list var_list ',' id I id 

iterate : ITERATE'[' iter_bindings ']' WHILE expr ',' RESULT expr 

iter_bindings : iter_bindings iter_binding I iter_binding 

iter_binding : id '= 1 expr ', 1 expr 

conditional : IF expr THEN expr ELSE expr 

prim_expr : integer I string I id I float 

mult_value : '<' expr_list '>' 
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expr_list : expr_list ',' expr I expr 

func_app : id app_args 

macro_call : id app_args 

app_args : '(' ')' I '(' app_arg_list ')' 

app_arg_list : app_arg_list c , 

' 
expr I expr 
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11 Appendix Ill: Pythia - the Delirium Code 

I pythia.del - this is the Delirium code for the compiler 

macro tree_valk_synthesize(tree,operator,extra) 

let <stl,st2,st3> = tree_syn_chop(tree) 

in tree_syn_merge(tree_syn_op(stl,operator,extra), 

tree_syn_op(st2,operator,extra), 

tree_syn_op(st3,operator,extra), 

operator,extra) 

macro tree_valk_update(tree,node_type,operator,extra) 

let <utl,ut2,ut3> = tree_up_chop(tree,node_type,operator,extra) 

in tree_merge(tree_up_op(utl,node_type,operator,extra), 

tree_up_op(ut2,node_type,operator,extra), 

tree_up_op(ut3,node_type,operator,extra)) 

macro tree_valk_inherit(tree,operator,info,extra) 

let <itl,it2,it3> = tree_in_chop(tree,operator,info,extra) 

in tree_merge(tree_in_op(itl,operator,extra), 

tree_in_op(it2,operator,extra), 

tree_in_op(it3,operator,extra)) 

# iterate_to_fixpoint is a macro that iterates synthesized attribute 

# tree traversals until the second return value is false 

macro iterate_to_fixpoint(tree,operator,extra) 

iterate { 
results = <tree,TRUE>, 

tree_walk_synthesize(car(results),operator,extra) 

} while cadr(results), 

result car(results) 

main() 
let <init_tree,macros> = compile() 

<ops,types> = read_operator_info() 

expand_tree = iterate_to_fixpoint(init_tree,expand_macro,macros) 

analyzed_tree = analyze(expand_tree,ops,macros) 

optimized_tree = optimize(analyzed_tree,ops) 

used_tree = mark_used(optimized_tree) 

<convert_tree,number> = convert(used_tree) 

cleaned_tree = tree_walk_update(convert_tree,LETREC,clean_up,NULL) 

in output_graph(cleaned_tree,number,types,ops) 
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I compile - read in the lexemes, do a parallel YACC parse, recombine 

I the parse tree, and return it. Return the merged macro table as well. 

compile() 
let <c1,c2,c3> = split_lexemes() 

in forge_parse_tree(partial_parse(c1),partial_parse(c2), 

partial_parse(c3)) 

I analyze - given a parse tree, the operator descriptions, and the 

I hash table of macros, do environment analysis and return the 

# annotated tree. 

analyze(tree,ops,macros) 
let free_tree = car(tree_walk_synthesize(tree,gather_free,NULL)) 

recon_tree = tree_walk_inherit(free_tree,reconcile_refs,ops,NULL) 

marked_tree = tree_walk_update(recon_tree,ANY,mark_extra,SAFE) 

pruned_tree = tree_walk_update(marked_tree,ANY,prune_extra,SAFE) 

overmark_tree = tree_walk_update(pruned_tree,ANY,mark_extra,RISK) 

closed_tree = iterate_to_fixpoint(overmark_tree,mark_closures,NULL) 

final_tree = tree_walk_update(closed_tree,ANY,mark_extra,FINISH) 

in tree_walk_update(final_tree,ANY,prune_extra,FINISH) 

# optimize- first iterate the inline expansion code until fixpoint. 

# Then do constant propagation and common sub-expression elimination. 

optimize(tree,ops) 
let expanded_tree = 

iterate { 
results= do_an_expansion(tree,ops), 

do_an_expansion(car(results),ops) 

} while cadr(results), 

result car(results) 

const_tree = iterate_to_fixpoint(expanded_tree,propagate_const,NULL) 

in tree_walk_update(const_tree,ANY,CSE,NULL) 

# do_an_expansion- given a tree and the operators, do an inline 

# expansion pass. Then mark any further expansions that are to be 

# done. Return the nevly expanded tree and a TRUE/FALSE boolean 

# indicating whether more work remains. 

do_an_expansion(tree,ops) 

let modified_tree = tree_valk_update(tree,FUNC_APP,expand_calls,ops) 

redone_tree = analyze(modified_tree,ops,NULL) 

in tree_walk_synthesize(redone_tree,mark_2_expand,NULL) 
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# convert - given a parse tree, number each template and then convert 

# it into a graph. Return the annotated tree and the total number of 

#templates. 

convert(tree) 
let <number,numbered_tree> = number_templates(tree,O) 

<ct1,ct2,ct3> = output_chop(numbered_tree) 

new_tree = tree_merge(output_op(ctl), output_op(ct2), 

output_op(ct3)) 

in <new_tree,number> 
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12 Appendix IV: BNF For Intermediate Form 

graph : 'ntemplates:' int 'start_template:' int templates 

templates : 'template index:' stats arg_arcs env_arcs const_arcs nodes 

stats : 'n_env:' int 'n_const:' int 'n_args:' int 'n_arcs:' int 

arg_arcs arc-set 

env_arcs : arc-set 

const_arcs : const_arcs const_arc I null 

const_arc : arc 'constant type: ' int ' data: ' const_data 

arc-set : 'ncopies:' int arcs 

arcs : arc arcs I null 

arc : 'arc num' int 'to' int 'arc is word:' flag 'arc is destr:' flag 

'fwd null: ' int int 

node 'node' int 'intr: ' int 'type:' int 'template: ' int 'name:' id 

'noutputs:' n outputs 

outputs : arc-set outputs I null 

flag : 1 I 0 
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